

6th International Conference on Foodomics 2024, Cesena, 14-16 February 2024

Mediterranean and medicinal plants as source of bioactive essential oils for new natural functional ingredients

Federica Barbieri¹, Martina Čagalj², Vida Šimat², Chiara Montanari¹, Chiara Angelucci¹, Sara Morandi³, Daniela Bassi³, Fausto Gardini¹, Giulia Tabanelli¹

¹Department of Agricultural and Food Sciences, University of Bologna, Italy; ²Department of Marine Studies, University of Split, Croatia; ³Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Cremona, Italy.

federica.barbieri16@unibo.it

INTRODUCTION

Essential oils (EOs): a feasible solution for the enhancement of food safety and quality due to their antimicrobial and antioxidant activities (Gurtler and Garner, 2022)

 \checkmark to meet the consumer demand for natural and healthy products

 \checkmark to reduce the environmental impacts of agro-food sector.

AIM OF THE RESEARCH

- ✓ Characterization of ten EOs obtained from Mediterranean and medicinal plants;
- ✓ Evaluation of EOs bioactive potential against food-borne pathogens and spoilage microorganisms;
 - ✓ Study of the influence of intrinsic factor (pH) on antimicrobial activities.

<u>Characterization of EOs</u>: comparison between two chromatographic techniques \rightarrow SPME-GC-MS and direct injection in GC-MS of samples (Barbieri et al., 2022); <u>Antimicrobial function</u>: minimum inhibiting concentration (MIC) assessment against spoilage and food-borne pathogens (Barbieri et al., 2022); <u>Antioxidant potential</u>: in vitro tests using different methods (FRAP, DPPH, and ORAC) (Čagalj et al., 2022).

RESULTS

✓ Comparison between direct injection in GC-MS or SPME-GC-MS

 \rightarrow interesting VOCs profile, with the presence of molecules that can exert antimicrobial function

 \rightarrow example of compounds characterized by different percentages depending on the method used (GC-MS *vs* SPME-GC-MS):

- Carvacrol 75.9% vs 10.3% (Oregano)
- Eugenol 75.2% vs 45.2% (Cloves)
- Cinnamaldehyde 62.0% vs 13.7% (Cinnamon)
- Anethole 50.8% vs 17.1% (Fennel)

These differences can be attributed to the limitations of the SPME technique

Many of these compounds are characterized by antimicrobial activity

Target microorganisms	pН	Cinnamon	Myrlte	Juniperus	Cloves	Laurel	Fennel	Cumin	Sage	Marjoram	Oregano
<i>Listeria monocytogenes</i> Scott A	7	250	> 5000	> 5000	1000	> 5000	> 5000	> 5000	> 5000	5000	250
	6	250	> 5000	> 5000	1000	> 5000	> 5000	4000	> 5000	4000	200
	5	125	> 5000	> 5000	250	4000	> 5000	2000	> 5000	3000	200
<i>Staphylococcus aureus</i> DSM 20231 ^t	7	250	> 5000	> 5000	1000	> 5000	> 5000	3000	1000	> 5000	250
	6	250	> 5000	> 5000	1000	> 5000	> 5000	3000	1000	> 5000	200
	5	250	> 5000	> 5000	250	2000	> 5000	1000	1000	1000	150
Escherichia coli 555	7	250	> 5000	> 5000	1000	> 5000	> 5000	> 5000	> 5000	3000	400
	6	250	> 5000	> 5000	1000	> 5000	> 5000	> 5000	> 5000	3000	300
	5	250	> 5000	> 5000	1000	> 5000	> 5000	> 5000	> 5000	3000	250
<i>Enterococcus faecalis</i> EF37	7	500	> 5000	> 5000	3000	> 5000	> 5000	> 5000	> 5000	> 5000	400
	6	500	> 5000	> 5000	2000	> 5000	> 5000	> 5000	> 5000	> 5000	400
	5	500	> 5000	> 5000	1000	> 5000	> 5000	> 5000	> 5000	> 5000	300

MIC against spoilage and food-borne pathogens

Promising results with **OREGANO and CINNAMON EO** against all the microorganisms tested, in particular *List. monocytogenes* Scott A and *Staphylococcus aureus* DSM 20231^t:

➡ probably due to their chemical composition

1 2 3 4 5 6 7 8 9 10 11 12
BOOOOOOOOO
C C C C C C C C C C C C C C C C C C C
FOODOOOOO
GOODOOOQ
HODOCOCC

UNIVERSITÀ CATTOLICA del Sacro Cuore

FOr	FRAP	DPPH	ORAC		
EUS	(mM Te)	(mM TE/L)	(mM TE/L)		
Cinnamon	0.41 ± 0.02	3.16 ± 0.77	4.95 ± 0.17		
Myrtle	-	-	4.11 ± 0.57		
Juniperus	0.01 ± 0.01	-	4.09 ± 0.41		
Cloves	5.67 ± 0.15	34.71 ± 0.90	8.88 ± 0.10		
Laurel	0.34 ± 0.06	1.56 ± 0.41	5.79 ± 0.90		
Fennel	0.01 ± 0.01	1.31 ± 0.41	4.55 ± 0.42		
Cumin	0.01 ± 0.01	-	4.95 ± 0.47		
Sage	0.01 ± 0.01	-	3.48 ± 0.51		
Marjoram	-	-	5.19 ± 0.54		
Oregano	0.18 ± 0.01	-	5.26 ± 0.29		

Antioxidant activity

In vitro antioxidant potential assessed using different methods (FRAP, DPPH, and ORAC) highlighting promising potential for **CLOVES** and **CINNAMON EO**

CONCLUSIONS

- ✓ The results highlighted a promising antimicrobial and antioxidant potential OREGANO, CINNAMON and CLOVES EOs.
- This research can contribute to increase the knowledge of these plant matrices that can be exploited as a source of natural and functional ingredients, characterized by bioactive compounds.

REFERENCES: Barbieri et al. (2022). Scientific reports, doi: 10.1038/s41598-022-17408-4; Čagalj et al., (2022). Foods, doi:10.3390/foods11233847; Gurtler and Garner (2022). Journal of Food Protection, doi: 10.4315/JFP-22-017.

PRIMA program is supported by the European Union.